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ABSTRACT

This paper reviews the application of the EM Algorithm to marginal

maximum likelihood estimation of parameters in the latent class model and

extends the algorithm to the case where there are monotone homogeneity

constraints on the item parameters. A likelihood ratio test of the

hypothesis of monotone homogeneity is proposed. The hypothesis is of

interest because all standard item response theory models assume that it

holds.
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INTRODUCTION

The purpose of this paper is twofold: first, to review the

application of the EM algorithm of Dempster, Laird, and Rubin (1977) to

marginal maximum likelihood estimation of parameters in the latent class

model, and second, to extend this algorithm to the case where there are

monotone homogeneity constraints on the item parameters.

Let us briefly review the elements of latent class models. The

reader desiring a thorough introduction can consult Lazarsfeld and Henry

(1968). The data to be accounted for are vectors of responses to items.

In this paper we are only concerned with dichotomous item responses,

although many of the ideas can be generalized to the case of polychotomous

responses (cf. Goodman, 1974). It is assumed that every subject belongs

to exactly one of a finite set of mutually exclusive and exhaustive latent

classes. Theoretically, the distribution of the response vectors is to be

accounted for by two sets of parameters and one key assumption. The two

sets of parameters are the state probabilities,(vk), governing the

multinomial distribution of subjects over the latent classes, and the

conditional probabilities of correct response to each item, given the

respective states, (Pkj)- The key assumption is that the responses are

conditionally independent, given the state of subject. This implies that

any relationships between items must be explained in terms of differences

in the Pkj'S between classes. Models are specified by stipulating the

number of classes and by placing constraints on the matrix of conditional

probabilities.
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For some time the problem of estimating parameters in latent class

structures presented a real obstacle in the application of the latent

class framework. It is necessary to employ iterative procedures in which

one selects a set of trial values, improves upon these values in the light

of the data via some appropriate algorithm, and then repeats the process

until (one hopes) the values stabilize at a good solution. McHugh (1956)

derived the maximum likelihood estimators, but his solution applies only

to the unconstrained model.

A great advance was achieved when Goodman (1974) described a

particularly simple interative procedure which also has the virtue of

automatically producing estimates of probabilities which fall in the unit

interval; furthermore it is very easy to modify the procedure to satisfy a

fair variety of other constraints on the parameters. There is one problem

which Goodman's procedure shares with McHugh's, however. Both procedures

take as their data the frequency counts in the cells of the multi-way

item-by-item ---by-item contingency table. For a relatively small number

of items this presents no problem. But the number of cells grows

exponentially with the number of items, so calculations which require

dealing with all these cells become impractical very quickly as the number

of items is increased. For example, the contingency table for data from a

20 item test would have 220 cells, which is more than a million.

Fortunately, it is possible to formulate an algorithm which is logically

equivalent to Goodman's, but which circumvents the problem of dealing with

all possible cells in the n-way contingency table.
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Goodman's algorithm and the modification of it to be presented here

are just special cases of the EM algorithm applied to the latent class

model. It will be useful to carefully review the rationale behind the

application of the EM algorithm in the latent class model context, in

order to lay the groundwork for the extension of the algorithm to cover

monotone homogeneity constraints on the item parameters. The rationale

will be developed in the next section and extended to monotonely

homogeneous items in the section after that.

APPLICATION OF THE EM ALGORITHM TO

THE LATENT CLASS MODEL

Estimation of parameters in the latent class model would be easy if

we knew the state of each subject. The maximum likelihood estimates of

the distribution of subjects over states would just be the sample

proportions falling in the respective states. The estimates of

conditional response probabilities to items, given state, would be the

corresponding sample proportions of item responses.

The missing data about the states of the respective subjects turns an

easy problem into a hard one. Problems with this general character, which

would be manageable if only some crucial information were not missing,

occur in many contexts. They have inspired numerous special algorithms,

often of the following form:
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1. Make an initial guess at the parameter values.

2. Using this guess, make an informed guess regarding the missing
data.

3. Using this informed guess in place of the missing data, apply
the procedure you would ordinarily use to estimate parameter
values.

4. Replace the initial guess at the parameter values with the
latter estimates and repeat the process until the parameter
estimates in steps 1 and 3 no longer differ significantly.

Dempster, Laird, and Rubin (1977) synthesized these many special

algorithms into a general approach, which they call the EM algorithm,

and showed that under fairly general conditions, if maximum likelihood

procedures are used at each iteration in Steps 2 and 3 above, the

algorithm converges to marginal maximum likelihood estimates.

In describing how this process works in the case of the latent

class model, let us use the following notation.

1 if subject i is correct on item j

ij= 0 if subject i is incorrect on item j;

n = the number of subjects;

J = the number of items;

Vk = the probability of a subject being in class or state k;

s = the number of latent classes or states;

V= (v1,. .,Vs), the vector of state probabilities;

Xi = the vector of responses of subject i to items j = 1, .., J;

Pkj = the conditional probability that a subject in state k will

respond correctly to item j;

P = (Pkj) , the states-by-items matrix of conditional response

probabilities;
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= unit vector with I in k h- coordinate and O's everywhere else,

k=l,...,s;

_i = the unit vector k corresponding to the state of subject i.
I

Note that ki is 1 if subject i is in state k, and is 0 otherwise.

Let us denote the conditional probability of obtaining response

vector xi, given that subject i is in state k, by

Ik (xi) = Ik (xiIP v)

J x. 1-x. (1)
= . Pkj 'j(1-Pkj)
j=1

The likelihood of the "complete" data, that is, the joint

likelihood of responses and missing state membership vectors zi, is

given by

L "(l,. n, ; -Zl,... ' n P ,V)

n s ki

-T, r, II(x)
i=1 k=1 k k-i

Let Ik be the set of indices for subjects in state k, i.e. those
I

for whom ti = 1. Then the likelihood of the complete data can be

rewritten as

L(Xl..,Xn;Zl,... , _zn,_)

(2)

k
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s n s J r nk-r: V n k ) k . I ) ) (3)
k=1 k=1 j=1 kJ  ("k

where nk denotes the number of subjects in state k and

rkj = xij,
iEI k

denotes the number of correct responses to item j from subjects in

state k. Thus, the likelihood of the complete data is an exponential

family and the set of r 's and n 's are sufficient statistics for the

likelihood.

The likelihood function for the complete data is to be contrasted

with the marginal likelihood function of the data actually observed.

The marginal likelihood of the response vector xi for a given subject

is the average over states of the conditional probabilities of the

response vector, given the states,

l*(x i) = l*(x i IP,V)

(4)
S

= I

k=1

The marginal likelihood of all the observed response vectors is given

by

L*(x i ,. .nIp, V)

= E z L(Xl '"" ~ ...nZl'' zn I P '- )  (5)

n
= l*(xi).
i=1
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It is possible to attack the maximization of Equation 5 directly,

but doing so leads to a cumbersome system of nonlinear equations.

Another approach suggested by the relationship between the likelihood

function for the complete data and the marginal likelihood can be used

to maximize the latter indirectly.

Taking logarithms of the likelihood of the complete data in

equation 3 yields

s s J
log L = nklog Vk+ l1 j+ [r kj log pk + (nk-rkj)log(1-Pk.)]. (6)

k=1 k=1j=

If we knew the state of each subject, we could count the nk's and

rkj's and the standard ratios of these frequencies would be seen to

be the maximum likelihood estimators of the vk's and Pkj'S.

Suppose we symbolically calculate the conditional expectation of

Equation 6, given the observable response vectors xl,...,xn and

trial values of the parameters, Po and 1o:

E~logL(.1l,...,_ nzl,....,-n IPV) 1~. ,-'-n,9Povol

(7)
s S J
T E (nk)log .k +  7 7 FEo(rkj)log + E (n-r )log ( )

k=1 k=1 j=1

where E (.) denotes the conditonal expectation, given the responses and

trial parameter values, E(.1,.., nPo, )) .

Let Vko denote the kth coordinate of the trial state probability

vector- v and let vki denote the conditional probability that subject i

.. w I imm~mmm~mmmm" k'm i m m~ mm m I
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is in state k, given the subject's responses, xi, and the trial

parameter values Po and vo . By Bayes' theorem,

Vko k( x il'.o) (8)

ki 1*(X i IPo,_ o )

The conditional expectations Eo(nk) and Eo(rkj) can be

easily computed in terms of the vki'S. Recall that the scalar

product of the state vector for subject i, zi, and the unit vector

corresponding to state k, ek, is 1 if subject i is in state k and 0,

otherwise. Thus,

n
nk e

and

n
r kj i~ixij-2ki

The expected number of subjects in state k, given the responses

and trial values of the parameters, is

n
Eo(nk) = E( Sk!ixI-""'n; P0 9, )

n

n

V W1
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The expected number of correct responses to item j from subjects

in state k, given the responses and trial parameter values, is

n x
Eo(rkj) = E( x ijekli 1".1.n; Po'-o )

nn xij P(zi=4 k-1i ... x ; P09Vo i (0)

n
Xii Vki

i= ki"

Equations 8, 9 and 10 enable us to compute numbers to use in

Equation 7. Note that the trial values of the parameters P and v0 -- o

used to computer the Eo(nk)'s and Eo (Pkj)'s are distinct from

parameters P and v which are free variables in the likelihood functions

given in Equations 5, 6 and 7.

It is often relatively easy to maximize Equation 7. If the

resulting parameter estimates differ from the trial values Po and

_ o, they will yield higher values of the marginal likelihood function

L* than Po and Vo, though they may not maximize L*. If they do not

differ from Po and vo, then Po and 10 are also solutions to the

marginal likelihood equations which result from setting the partial

derivatives of log L* equal to zero. This fact is established by

Dempster, et. al (1977) for problems in which the likelihood of the

complete data is an exponential family, as is the case here. Sometimes

there are multiple possible solutions to the marginal maximum

likelihood equations and the question arises whether a given solution

is the global maximum of the likelihood function. Ways of dealing with

this problem will be discussed later in this section.
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Finding values of P and v to maximize Equation 7 breaks down

conveniently into two subproblems: maximization of

5
Lv =k E0(nk)log vk (11)

k= 1

with respect to the vector of state probabilities, v, and maximization

of

L E (rkj-Pkj)] (12)
P k=l j=lk-

with respect to the matrix of conditional response probabilities, P.

If no contraints are placed on the parameters, the solution to the

first problem is given by

, Eo(nk)
k n (13)

n
SVkii=1

n

The solution to the second problem is given by

, Eo(rkj)

Pkj EO(nk) (14)

n
Sxi .vki=1 J k

n
Vki

i=1
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Let 0 represent a generic item parameter, possibly affecting

several of the Pkj's. In maximizing the part of Equation 7 which

depends on the free item parameters, we set the partial derivative of

Equation 11 with respect to 0 equal to zero; the resulting equation can

be arranged to read

J s (P'jPkj) "lPkj

n 7 _ v _k_ O. (15)
k=1 k=1 Pkj( 1-Pkj)'

Equality and complementarity constraints

In general, Equation 15 leads to a system of nonlinear equations

which can be very difficult to solve. However, there are some special

cases which are easy to handle. For example, if there are no

constraints on the Pkj'S, then each Pkj is a distinct parameter

affecting only one term in the sum in Equation 15. The partial

derivative with respect to Pkj itself is 1, all the other Partials

are 0, and we obtain pkj as the solution.

More generally, solution is easy if we only wish to impose

equality or complementarity constraints, so that we reqdire Pkj =

for one set Of Pkj's, Pkj = 1-) for another set, and no Pkj

outside of these sets depends on 0. Then Pkj(1-Pkj) equals 0(1-),

independent of subscript, for all j,k such that the partial derivative

'Pkj/ 0 is nonzero. The partial derivative is 1 for Pkj'S equal to

0 and -1 for those equal to 1-0. Let Io be the cet of indices j,k

for which Pkj equals 0 and I, the set for which Pkj is 1-0. Then
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Equation 14 reduces to a linear equation whose solution is the

following weighted combination of p jIs:

vY p j + Y v (l-pj)
j,kel 0  j,keIb

vk + Y V (16)
j,kr.I j,kelk1

The application of the EM algorithm to estimation of parameters in

the latent class model with equality and complementarity constraints

can be summarized as follows.

1. Select trial values of the parameters Po and yo.

2. Compute conditional state probabilities for all subjects,
using Equation 8.

3. Revise the parameter estimates of v via Equation 13 and the
estimates of P via Equations 14 anS 16.

4. Repeat Steps 1 through 3, using the revised estimates as new
trial values, until the trial values and the revised values no
longer differ significantly.

The key computations in this algorithm involve ratios of counts or

estimates of counts in which the denominators are always at least as

big as the numerators. The constraint that all estimates lie in the

unit interval is therefore automatically satisfied. This is a

sigrificant feature of the EM approach not shared by the Newton-Raphson
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algorithm when applied to the marginal likelihood function in Equation

5.

The most significant problem which this algorithm is likely to

encounter in practice is one that it shares with all existing

algorithms that would be practical to use on latent class model

problems. It was noted earlier in the paper that the maximum

likelihood equations can have multiple solutions. In problems where

there are multiple solutions, any iterative algorithm will tend to go

to a solution close to the trial values initially selected. The

resulting solution may well not be the parameter values that truly

maximize the likelihood, particularly if the starting values are

selected arbitrarily. It is therefore a good idea to try a variety of

plausible sets of starting values.

Goodman (1974) gives an algorithm for estimation of parameters in

complex contingency tables where some of the variables are not

observable. The specialization of his algorithm to the case of

dichotomous responses is essentially equivalent to the algorithm given

here. Since it is intended for analysis of contingency tables, it

assumes that the joint response data for the subjects is summarized in

that form. Latent class model estimation programs implementing

Goodman's algorithm, such as Clogg and Sawyer (1981), are limited in

terms of the number of items which they can accomodate, because the

multi-item contingency table quickly becomes unmanageable as the number

of items increases. The form of the algorithm given in this paper
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deals with each individual response vector, rather than cell counts in

a contingency table. Hence, the effect of increasing the number of

items has no effect on the algorithm beyond the increase in running

time, which is directly proportional to the number of items. Actually,

the effect on running time is more closely proportional to the square

of the number of items in applications, such as scaling, in which the

number of states in the model is also proportional to the number of

items. Nevertheless, the effect is much more manageable than the

exponential increase in the number of cells in the contingency table

with which an algorithm for analysis of contingency tables must deal.

The EM algorithm in the form presented in this paper can cope with

tests comprised of many items, while automatically satisfying the

fundamental constraint that the parameter estimates all fall in the

unit interval and any further equality and complementarity constraints

the investigator may wish to impose on the parameters. This fact,

together with computational simplicity at each iteration, makes the

algorithm an attractive alternative to other approaches to the

calculation of the maximum likelihood estimates for the latent class

model. Two questions arise: one about how many models of interest can

be formulated using only equality and complementarity constraints, and

a second one about the possibility that there are other special kinds

of constraints which would also yield easy solutions at each iteration

of the algorithm.

The answer to the first question is that many latent class models

of interest can be expressed in terms of equality and complementarity

-~~ ~ ----------------- -
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constraints on the parameters, including most of the models which have

been proposed to date. The latent distance model of Lazarsfeld and

Henry (1968) and the quasi-independence model of Goodman (1975), both

of which are generalizations of the Guttman simplex model for scaling

response patterns, fall in this category. Dayton and Macready (1976,

1980) have proposed anologs and extensions of these models for

applications in the analysis of learning hierarchies; their extensions

can also be expressed in terms of equality and complementarity

constraints. Paulson (1985) has proposed models for signed-number

addition test performance with one latent class for students who have

mastered the concept and other latent classes corresponding to classes

of subjects exhibiting certain systematic patterns of errors. These

models are not scaling models, but they are expressable in terms of

equality and complementarity constraints on the parameters.

If only equality and complementarity conditions constrain the item

parameters, then each Pkj is influenced by exactly one parameter.

This rules out models which characterize each Pkj in terms of

conjoint effects of item and state parameters, as the Rasch model does,

for example. It also rules out models that impose ordering constraints

on the Pkj'S. Thus, while many interesting models can be cast in

terms of equality and complementarity constraints, many others cannot.

Fortunately, models involving conjoint item and state effects and

models imposing ordering constraints can be formulated which lead to

easily solved forms of Equation 15, preserving the computational

simplicity of the EM algorithm.
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EXTENSION TO MONOTONELY HOMOGENEOUS ITEMS

A set of items is said to be monotonely homogeneous if the

probabilities of correct response in different subject states fall in

the same order for all items. That is, for every pair of items j, j'

and every pair of states k, k'

Pkj>Pk' :> Pkj'>Pkj (16)

Any set of items conforming to a unidimensional item response theory

which requires the probabilities of correct response to items be

monotonically increasing functions of ability is monotonely

homogeneous. All standard item response theory models impose this

condition. On the other hand, if a set of items is monotonely

homogeneous, then the averages of the conditional probabilities of

correct response over all the items, given the respective states, must

fall in the same order as the conditional probabilities for individual

items. Let us define ability level for subjects in a given state to be

the average of the conditional probabilities of correct response over

all the items, i.e. the "true proportion correct". Consider the

function associated with each item which is obtained when one plots the

conditional probability of correct response to the item, given state,

versus true proportion correct. This function is necessarily

monotonically increasing for every item. That is, any monotonely

homogeneous set of items is associated with a corresponding set of

monotonically increasing item response functions. Thus, monotone
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homogeneity of a set of items is a necessary and sufficient condition

for the items to be representable by an item response theory model with

monotonically increasing item response functions.

The assumption of monotone homogeneity is of interest from a

couple of different perspectives. Since it is the minimal assumption

concerning the form of the item response function sufficient to yield a

model with monotonically increasing tracelines, it is worth considering

how far the theory can be developed with no further assumptions

regarding the form of the functions. Mokken (1971), who first

emphasized the importance of the assumption, Mokken and Lewis (1982),

and Lewis (1985) have pursued this idea in developing a nonparametric

approach to item response theory. A fundamental problem in this

development is the estimation of item response functions. In this

section we show how to obtain marginal maximum likelihood estimates for

these functions in models restricted to a finite number of states. The

restriction to a finite number of ability states would seem to be an

extreme limitation on the lue of such an approach, but Bock and

Aitkin (1981) have shown that it is quite workable in application to

standard item response theorY models.

From another point of view, the assumption of monotone homogeneity

is interesting because it provides a definitive criterion for deciding

that a unidimensional representation of responses to a given set of

items is inappropriate. Holland (1981) has derivwd from the assumption

a series of necessary conditions observed data must satisfy in order to

be capable of representation by a unidimensional item response theory



- 18 -

model. Unlike the assumption itself, these conditions can be tested

without estimating the item parameters. The simplest of the conditions

is that interitem correlations must be nonnegative. Paulson (1985) has

shown that this condition is violated in an analysis of signed-number

addition test data from a study by Tatsuoka and Birenbaum (1979).

Paulson describes a simple latent class model which does give a good

account of this data. This model is not a scaling model: the states

in the model correspond either to mastery of the concept or to one of a

set of systematic misconceptions students fall into regarding the

concept. The latter states are not ordered. The nonnegativity of

interitem correlations is a simple but weak criterion for testing

monotone homogeneity. Holland (1981) gives more stringent tests in

terms of nonnegativity of correlations between indices based on

Lombined item responses. We will describe a more direct approach later

in this section - the likelihood ratio test of the goodness of fit of

,' rnonotonely homogeneous finite-state model compared to the fit of

the Lurresponding latent class model without the monotone homogeneity

m.onstralnt.

Moditication of the Algorithm to Provide Monotone Homogenity

Recall that at each iteration of the EM algorithi, the problem of

maximizing the conditional likelihood, given the responses and trial

values of the parameters, reduces to maximization of two separate

terms, one depending only on the state probability distribution

parameters and the other only on item parameters, i.e. parameters
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affecting conditional response probabilities, given the subject's

state. These terms were given above in Equations 10 and 11.

When the item parameters are unconstrained, each term in the sum

in Equation 11 can be maximized separately. If the parameters are

constrained, but the constraints apply separately to each item, then

the set of terms involving each item can be maximized separately.

Monotone homogeneity constraints are of this type: they specify the

ordering of the conditional correct response probabilities to a

particular item, given the respective states, but say nothing about

relationships between response probabilities involving different items.

Thus, the maximization of Equation 11 can be written as

J s
max Lp = 7 max k [E 0(r kj)log Pkj + Eo(nk-rkj)1og(1-Pkj). (17)

j=1 k=1okjEnkrJl(1PJ.

Each of the maximizations on the right hand side of Equation 17

corresponds to the maximium likelihood equation for estimating the

success probabilities in s independent groups for a particular item.

Carrying out the maximization under ordering constraints has a known

solution which bears an interest relation to the algorithm given above

for dealing with equality constraints.

Consider the problem of maximum likelihood estimation of

proportions in s independent groups. Its solution is the familiar

= k, for k=1,...s
Pk =- -
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In our problem, rk and nk are replaced by Eo(rkj) and

Eo(nk), their conditional expectations for item j, given the

observed responses and trial values of the parameters.

Now let us add the constraint that

P 1 P 2 < .." < P s *I

Barlow, et al. (1972) have shown how to treat this problem in terms of

isotonic regression. The solution is built upon the unconstrained

maximum likelihood estimators just mentioned, which are referred to by

Barlow, et al. as basic estimates. These basic estimates are

amalgamated for solution blocks of adjacent groups within which each

group's estimate is set equal to the weighted average of the Pk's for

the groups comprising the solution block.

The solution blocks are formed as follows. At first each group

forms its own block. If the basic estimates for all the groups fall in

the right order, then the ordering constraint is not active and the

constrained estimates coincide with the basic estimates. A group will

continue to form its own solution block unless one or both of the

following conditions hold:

a) its inclusion with the group or adjacent set of groups

immediately above it in the hypothesized order would increase

the average for the resulting block; or

b) its inclusion with the group or adjacent set of groups

immediately below it in the hypothesized order would decrease

the average for the resulting block.
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The existence of either condition implies a violation of the ordering

constraint which can be remedied by combining the groups involved and

setting the estimate of probability correct in each of these groups

equal to the weighted average of their basic estimates.

Let the weighted average of the basic estimates in the adjacent

set of groups with indices running from t through u be denoted by

u
Av(t, ) = E(n k)Pk

k=t (18)
u
7 Eo(nk)

k=t

The constrained maximum likelihood estimates can be expressed in

terms of "max-min" formulas in four different but equivalent ways:

P*k = max min Av(t, u)
t<k u>k

= min max Av(t, U) (19)
u>k tk

= max min Av(t, U)
tk u>t

= min max Av(t, U).
u>k t<u

The result given by Equations 18 and 19 is what one would obtain

using Equation 16 to impose the constraint that conditional
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probabilities of correct response in states belonging to the same

solution block must be equal. The main difference between the

algorithm to impose simple equality constraints and the algorithm

necessary to provide monotone homogeneity is that the solution blocks

and the equality constraints implicit in them are not given beforehand

and can change from one iteration to the next. The latter algorithm

must take this into account.

The Up-and-Down Blocks Algorithm. There are many ways one can

determine the solution blocks needed to satisfy Equation 19. Barlow et

al. (1972) recommend a procedure due to Kruskal (1964), called the

"Up-and-Down Blocks" algorithm. Key terms in the tests used in the

algorithm are defined as follows. Let B-, B, B+ be three

consectuive blocks in order. Block B is said to be up-satisfied if

Av B < Av B+. It is said to be down-satisfied if Av B_ < Av B. At

each stage of the algorithm one block is active; this may be

amalgamated with an adjacent block or, if it is up-satisfied and

down-satisfied, the next block become active. By convention, the first

block in order is down-satisfied and the last block is up-satisfied.

The exact sequence of events is as follows.

1. At the start, each state is a separate solution block. State
I is initially specified to be the active block.

2. Test to see if the active block is up-satisfied. If it is, go
to the next step. If it is not, pool the active block with
the next higher block; the new block becomes active. Go to
Step 3.
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3. Test to see if the active block is down-satisfied. If it is,
go to Step 4. If it is not, pool the active block with the
next lower block; the new block becomes active. Go back to
Step 2.

4. If the active block does not contain the highest state, make
the next higher block active and go back to Step 2. If the
active block contains the highest state, the algorithm is
finished.

The sequence of tests and actions to determine the solution blocks

is given for a hypothetical example in Table 1. In the example, there

are five groups with equal sample sizes, so that unweighted averages

are used. For the groups in their hypothesized order, the basic

estimates are .50, .60, .70, .40, and .90, respectively. When the

algorithm encounters the violation of monotone homogeneity in comparing

the third and fourth groups, adjustments are made resulting in the

final estimates .50, .57, .57, .57, .90.

Insert Table 1 about here

In summary, monotone homogeneity of items is provided by modifying

the EM algorithm for unconstrained marginal maximum likelihood

estimation as follows. At each iteration, compute the unconstrained

estimates and then apply the Up-and-Down Blocks algorithm to the

results for each item. Use these monotonely homogeneous values as

trial values on the next iteration. Iterate until the stopping

criterion you are using is satisfied.
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A Test for Monotone Homogeneity

When there are J items on a test and one is fitting an

unconstrained latent class model with s states, there are Js free item

parameters to be estimated. Let m. denote the number of level sets

determined by the Up-and-Down Blocks algorithm for item j. The number

of free item parameters in the model with the monotone

homogeneity constraint is then Y m. Let Lu and Lm denote the maxima

of the marginal likelihood function evaluated under the unconstrained

and monotonely constrained hypotheses, respectively. If the monotone

homogeneity hypothesis is correct, then asymptotically the likelihood

ratio test statistic

-2 log X= 2(log Lu _log L M) (20)

has a chi-squared distribution with Js - Y mj degrees of freedom.

This fact can be used to set up critical regions for tests of the

hypothesis.

Example. Figure 1 gives graphs of item response functions for

some signed-number addition test data obtained by Tatsuoka and

Birenbaum (1979). Five pairs of response functions are depicted - one

pair for each of five types of items on the test. Each pair consists

of an unconstrained item response function and a function constrained
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to be monotonically homogeneous. The analysis refers to a special

scoring of responses which only attends to whether the magnitude of the

response is correct, disregarding the sign of the answer. The curves

given are actually averages of four separate curves, because there were

four items of each type. Within types, the curves are practically

identical. The types vary in terms of whether the larger of the

addends appears first or second in the sum, and in terms of the signs

of the addends. An item such as "10+-5" would be of the type

designated L+-S on Figure 1, for example.

Tatsuoka and Birenbaum found that if one examines the magnitude of

the responses and the sign of the responses to these items separately,

some very interesting patterns emerge. Some groups of subjects fall

into systematic patterns of errors and correct response which

correspond to use of erroneous rules. Paulson (1985) found that a

five-state latent class model would give a good account of the

magnitude responses. That is why five-state models were used to obtain

the curves in Figure 1. Examination of the figures reveals that the

unconstrained and monotonically homogeneous curves are very similar fur

four of the five item types. However, for the type -L+-S, the

unconstrained curve is practically "U"-shaped. On the basis of these

curves, we would expect to reject the hypothesis of monotone

homogeneity. Since there are 20 items on the test and five states in

the model, the unconstrained model has 100 free item parameters. It

I4
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turns out that the total number of level sets in the monotonically

constrained model is 81. Thus, there are 19 degrees of freedom for the

chi-squared test. We do in fact reject the null hypothesis:

X 2(19)=82.30, p<.O001.

Further insight can be obtained by examining the data in Figure I

from another perspective. Figure 2 shows the profiles of responses to

the different types of items for subjects in each of the five states.

Subjects in State 4, the next to the highest state in terms of number

correct, do well on all item types, except Type -L+-S. Subjects in the

lowest state in terms of number correct, State 1, do well on Type

-L+-S, but poorly on all the rest. Type -L+-S is the only type on the

test for which one should add absolute values of the addends; one

should subtract on all the rest. Subjects in State 1 appear to follow

the rule, "Always add," whereas subjects in State 4 appear to follow

the rule, "Always subtract." Clearly, clusters of subjects following

erroneous rules of this sort can lead to violations of monotone

homogeneity.

SUMMARY

This paper has reviewed the application of the EM algorithm to

parameter estimation in the latent class model and shown how it can be

used to extend existing algorithms to cover monotone homogeneity

constraints on the item parameters. The assumption of monotone

homogeneity is interesting from a couple of perspectives. Items on a
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test have monotonically increasing item response functions if and only

if they are monotonely homogeneous, so the assumption leads to a

minimally restrictive form of item response theory. If the assumption

is violated, a unidimensional item response theory is clearly

inappropriate for the data in question. The paper has shown that, if

we restrict ourselves to finite-state latent-class models, we can use

the EM algorithm to obtain marginal maximum likelihood estimates of the

item response functions under the minimal monotone homogeneity

assumption. These "nonparametric" estimates should be very useful when

the assumption holds. On the other hand, if the assumption does not

hold, we would certainly want to know about it. With the marginal

maximum likelihood estimates in hand for both the monotonely

homogeneous latent class model and the unconstrained model with the

same number of states, we can calculate a direct likelihood ratio test

of the monotone homogeneity hypothesis.
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Up Down Last

Group Estimates Satisfied Satisfied Block? Action

.50 .60 .70 .40 .90 Yes Yes No Make next block active

.50 .60 .70 .40 .90 Yes Yes No Make next block active

.50 .60 .70 .40 .90 No Pool up

.50 .60 .55 .55 .90 No Pool down

.50 .57 .57. 57 .90 Yes Yes No Make next block active

.50 .57 .57 .57 .90 Yes Yes Yes Stop.

Table 1. Illustration of the "Up-and-Down Blocks" Algorithm.

Note: Each line indicates the outcomes of test made on an active
block. The current estimate of the correct response
probabilities for groups comprising the active block are
underlined at the left. The action taken is given at the right.
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FIGURE 1. Comparison of monotically homogeneous and unconstrained item
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FIGURE 2. Comparison of monotonically homogeneous and unconstrained state
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